1. Find the derivative of the function \(f(x) = \begin{cases}
2x & \text{if } x < 0 \\
2x - 1 & \text{if } x \geq 0
\end{cases} \)

Solution:
The function is given by two linear polynomials but on different intervals. It is clear that the function is not continuous at \(x=0 \), because \(\lim_{x \to 0^-} f(x) = 0 \neq \lim_{x \to 0^+} f(x) = -1 \). Thus, it is not differentiable at \(x = 0 \). The derivative is then given by

\[
f'(x) = \begin{cases}
2 & \text{if } x \neq 0 \\
doesn't exit & \text{if } x = 0
\end{cases}
\]

2. Evaluate \(\int_{-1}^{1} f(x) \, dx \) where \(f(x) = \begin{cases}
x^2 & \text{if } x < 0 \\
x^3 + 2 & \text{if } x \geq 0
\end{cases} \)

Solution: To evaluate the definite integral of the piecewise-defined function we split the definite integral into:

\[
\int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} \frac{x^2}{x^3 + 2} \, dx + \int_{0}^{1} x^3 \, dx
\]

\[
= \left[\frac{1}{3} \ln(x^3 + 2) \right]_{-1}^{0} + \left[\frac{1}{3} x^3 \right]_{0}^{1}
\]

\[
= \frac{1}{3} \ln(2) + \frac{1}{3}
\]

3. Sketch the graph of the function \(f(x) = \ln(x^2 + 1) \).

You have to get: domain, limits, asymptotes, c.n., increasing and decreasing intervals, local extrema, concavity.

Use \(\ln(2) = 0.7, \ln(3) = 1.1, \ln(5) = 1.6 \).
Solution:
Domain: \((-\infty, \infty)\)
Limits: \(\lim_{t \to \pm\infty} f(x) = \infty \)
There is no HA, VA, or SA.
Derivative: \(f'(x) = \frac{2x}{x^2 + 1} \)
CN: \(f'(x) = 0 \) leads to \(x = 0 \), the only critical number.
The function \(f \) decreases on \(x < 0 \) and increases on \(x > 0 \).
Using first derivative test we conclude that \(f(0)=0 \) is a local minimum.
\[
f''(x) = \frac{2(1 - x^2)}{(x^2 + 1)^2}
\]
\(f''(x) = 0 \) when \(x = \pm 1 \)
\(f \) is concave up on \((-1, 1)\) and concave down on \((-\infty, -1) \cup (1, \infty)\)
\(f \) has two inflection points, \((\pm 1, \ln(2))\).
4. Compute the following integrals:

(i) \[\int_1^2 \left(\sqrt{x} + \frac{1}{x^2} \right) \, dx \]

(ii) \[\int \cot x \, dx \]

Solution:

\[
\int_1^2 \left(\sqrt{x} + \frac{1}{x^2} \right) \, dx = \frac{2}{3} x^{3/2} - \frac{1}{x} \Bigr|_1^2 \\
= \frac{1}{6} + \frac{4}{3} \sqrt{2}
\]

\[
\int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx \\
= \ln |\sin x| + c
\]

5. Consider the parabola \(y = x^2 \). Show that \(B = 2A \), where:

- **A** is the area between the parabola, the \(y \)-axis and the tangent line at \(x_0 \).
- **B** is the area between the parabola, the \(y \)-axis and the horizontal line \(y = x_0^2 \).
Solution:
Without loss of generality let assume that x_0 is positive. The equation of the tangent line at (x_0, x_0^2) is given by

$$y = (2x_0)(x - x_0) + x_0^2$$

The area between the parabola, the y-axis and the tangent line at x_0 is given by

$$A = \int_0^{x_0} x^2 - [(2x_0)(x - x_0) + x_0^2] \, dx$$

$$= \int_0^{x_0} (x^2 - 2x_0x + x_0^2) \, dx$$

$$= \frac{1}{3}x_0^3$$

The area between the parabola, the y-axis and the horizontal line $y = x_0^2$ is given by

$$B = \int_0^{x_0} x_0^2 - x^2 \, dx$$

$$= \frac{2}{3}x_0^3$$

Therefore, $B = 2A$.